

DRAIN & UNDRAIN TRONG PLAXIS

Construction progress & time (Soil stresses and porewater pressure) Time increase Short-term Long-term "Snapshot" condition "Snapshot" condition Analysis type Undrained Consolidation Drained displacement @ short-term @ long-term Time increase Excavation

Drained / undrained

- Drained analysis appropriate when
 - Permeability is high
 - Rate of loading is low
 - Short term behaviour is not of interest for problem considered
- Undrained analysis appropriate when
 - Permeability is low and rate of loading is high
 - Short term behaviour has to be assessed

Drained / undrained

Suggestion by Vermeer & Meier (1998) for deep excavations:

$$T < 0.10 \quad (U < 10\%)$$

T < 0.10 (U < 10%) use undrained conditions

$$T > 0.40$$
 (U > 70%) use drained conditions

$$T = \frac{k E_{oed}}{\gamma_w D^2} t$$

Permeability

 E_{oed} = Oedometer modulus γ_{w} = Unit weight of water

Drainage length

Construction time

Dimensionless time factor

Degree of consolidation

Undrained behaviour with PLAXIS

Method A (analysis in terms of *effective* stresses): type of material behaviour: undrained effective strength parameters c', ϕ' , ψ' effective stiffness parameters E_{50}' , v'

Method B (analysis in terms of *effective* stresses): type of material behaviour: undrained **undrained** strength parameters $c = c_{ij}$, $\phi = 0$, $\psi = 0$ effective stiffness parameters E₅₀', v'

Method C (analysis in terms of *total* stresses): type of material behaviour: drained total strength parameters $c = c_u$, $\phi = 0$, $\psi = 0$ **undrained** stiffness parameters E_u , $v_u = 0.495$

Undrained behaviour with PLAXIS

Notes on different methods:

- Method A:
 - Recommended
 - Soil behaviour is always governed by effective stresses
 - Increase of shear strength during consolidation included
 - · Essential for exploiting features of advanced models such as the Hardening Soil model, the Soft Soil model and the Soft Soil Creep model
- · Method B:
 - Only when no information on effective strength parameters is avilable
 - Cannot be used with the Soft Soil model and the Soft Soil Creep model
- · Method C:
 - NOT recommended
 - No information on excess pore pressure distribution (total stress analysis)

Overview of models and allowable drainage types

Material model	Drainage type
Linear Elastic model	Drained
	Undrained (A)
	Undrained (C)
	Non-porous
Mohr-Coulomb model	Drained
	Undrained (A)
	Undrained (B)
	Undrained (C)
	Non-porous
Hardening Soil model	Drained
	Undrained (A)
	Undrained (B)

